PUBLICATION

出版物

論文

  1. Mizutani, T., Hara, R., Takeuchi, M., Hibi, M., Ueda, M., Ogawa, J., “One-pot synthesis of useful S-Substituted-L-cysteine sulfoxides using genetically engineered Escherichia coli”. J. Agric. Food Chem., 72(10), 5339–5347 (2024). doi: 10.1021/acs.jafc.3c08824

  2. Soong, C.L., Deguchi, K., Takeuchi, M., Kozono, S., Horinouchi, N., Si, D., Hibi, M., Shimizu, S., Ogawa, J., “Gene identification and enzymatic characterization of the initial enzyme in pyrimidine oxidative metabolism, uracil-thymine dehydrogenase.”J. Biosci. Bioeng., 137(6), 413–419 (2024). doi: 10.1016/j.jbiosc.2024.02.004

  3. Sato, G., Kuroda, K.*, “Overcoming the limitations of CRISPR-Cas9 systems in Saccharomyces cerevisiae: off-target effects, epigenome, and mitochondrial editing”. Microorganisms, 11(4), 1040 (2023). doi: 10.3390/microorganisms11041040

  4. Utsumi, R., Murata, Y., Ito-Harashima, S., Akai, M., Miura, N., Kuroda, K., Ueda, M., Kataoka, M., “Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies”. PLos One, 18(4), e0283002 (2023). doi: 10.1371/journal.pone.0283002

  5. Laily, I.N., Takeuchi, M.*, Mizutani, T., Ogawa, J., *Corresponding author “An ACE2, SARS-CoV-2 spike protein binding protein, -like enzyme isolated from food-related microorganisms”. Biosci. Biotechnol. Biochem., 87(6), 638–645 (2023). BBB論文賞 doi: 10.1093/bbb/zbad037

  6. Takimoto, R., Tatemichi, Y., Aoki, W., Kosaka, Y., Minakuchi, H., Ueda, M., Kuroda, K.*, “A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli“. Sci. Rep., 12(1), 4182 (2022). doi: 10.1038/s41598-022-08007-4

  7. Aiba, W., Amai, T., Ueda, M., Kuroda, K.*, “Improving precise genome editing using donor DNA/gRNA hybrid duplex generated by complementary bases”. Biomolecules, 12(11), 1621 (2022). doi: 10.3390/biom12111621

  8. Yamamoto, R., Sato, G., Amai, T., Ueda, M., Kuroda, K.*, “Development of artificial system to induce chromatin loosening in Saccharomyces cerevisiae“. Biomolecules, 12(8), 1138 (2022). doi: 10.3390/biom12081138

  9. Kuroda, K., Ueda, M., “Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology”. Methods Mol. Biol., 2513, 59-77 (2022). doi: 10.1007/978-1-0716-2399-2_5

  10. Kuroda, K.*, Ueda, M., “Simultaneous display of multiple kinds of enzymes on the yeast cell surface for multistep reactions”. Methods Mol. Biol., 2491, 627-641 (2022). doi: 10.1007/978-1-0716-2285-8_26

  11. 滝本廉, 植田充美, 黒田浩一, “酸素存在下でも酸素に弱いニトロゲナーゼを効率的に利用するための重要な因子を発見”. クリーンエネルギー, 31(9), 31-36 (2022).

  12. 黒田浩一, 滝本廉, 植田充美, “酸素感受性ニトロゲナーゼを好気条件下の細胞内で機能させるための因子とその応用”. 酵素工学ニュース, 88, 28-33 (2022).

  13. Nakagawa, K., Takeuchi, M., Tada, M., Matsunaga, M., Kugo, M., Kiyofuji, S., Kikuchi, M., Yomota, K., Sakamoto, T., Kano, K., Ogawa, J., Sakuradani, E. “Isolation and characterization of indigo-reducing bacteria and analysis of microbiota from indigo fermentation suspensions”. Biosci. Biotechnol. Biochem., 86(2), 273–281 (2022). BBB論文賞 doi: 10.1093/bbb/zbab209

  14. Kimoto, S., Takeuchi, M., Kishino, S., Itagaki, Y., Hara, R., Kitamura, N., Okada, N., Park, S.B., Ando, A., Ueda, M., and Ogawa, J., “Characterization of regioselective glycosyltransferase of Rhizobium pusense JCM 16209T useful for resveratrol 4′-O-α-D-glucoside production”.  J. Biosci. Bioeng., 134(3), 213–219 (2022). doi: 10.1016/j.jbiosc.2022.06.011

  15. 小川 順, 原 良太郎, 安藤 晃規, 竹内 道樹, 岸野 重信, “腸内細菌における食事成分・薬効成分代謝の解析と代謝物の生理機能”. 生化学, 95(4), 457–466 (2023). doi: 10.14952/SEIKAGAKU.2023.950457

  16. Arras, S.D., Sibaeva, M.N., Catchpole, R.J., Horinouchi, N, Si, D., Rickerby, A.M., Deguchi, K., Hibi, M., Tanaka, K., Takeuchi, M., Ogawa, J., Poole, A.M. “Characterisation of an Escherichia coli line that completely lacks ribonucleotide reduction yields insights into the evolution of obligate intracellularity”. eLife, e83845 (2023). doi: 7554/eLife.83845

  17. Mizutani, T., Hara, R., Iihoshi, T., Kozono, S., Takeuchi, M., Hibi, M., Takahashi, S., Ueda, M., Ogawa, J., “Identification of tryptophanase from Escherichia coli for the synthesis of S-allyl-L-cysteine and related S-substituted cysteine derivatives”. BJ. Biosci. Bioeng., 134(3), 182–186 (2022). doi: 10.1016/j.jbiosc.2022.06.001

  18. Mizutani, T., Hara, , Takeuchi, M., Yamagishi, K., Hirao, Y., Mori, K., Hibi, M., Ueda, M., Ogawa, J., “L-Tryptophan-starved cultivation enhances S-allyl-L-cysteine synthesis in various food-related microorganisms”. Biosci. Biotechnol. Biochem., 86(6), 792–799 (2022). doi: 10.1093/bbb/zbac044

  19. Kikuchi, M.*, Sowa, K.*, Takeuchi, M.*, Nakagawa, K., Matsunaga, M., Ando, A., Kano, K., Ogawa, J., Sakuradani, E. *First author “Quantification of leuco-indigo in indigo-dye-fermenting suspension by normal pulse voltammetry”. J. Biosci. Bioeng., 134(1), 84–88 (2022). doi: 10.1016/j.jbiosc.2022.04.009

  20. 竹内道樹, “死なないで!自殺酵素”. 日本生物工学会誌, 100(2), 87 (2022). doi: 10.34565/seibutsukogaku.100.2_87

  21. Kikukawa, H., Watanabe, K., Kishino, S., Takeuchi, M., Ando, A., Izumi, Y., Sakuradani, E., “Recent trends in the field of lipid engineering”. J. Biosci. Bioeng., 133(5), 405–413 (2022). doi: 10.1016/j.jbiosc.2022.02.001

  22. Zhang, Y., Mikkel, N., Breum, D., Schubert, S., Hashemi, N., Kyhnau, R., Knauf, M.S., Mathialakan, M., Takeuchi, M., Kishino, S., Ogawa, J., Kristensen, P., Guo, Z., Eser, B.E., “Semi-rational engineering of a promiscuous fatty acid hydratase for alteration of regioselectivity”. ChemBioChem, 23(4), e202100606 (2022). doi: 1002/cbic.202100606

  23. Tatemichi, Y., Nakahara, T., Ueda, M., Kuroda, K.*, “Construction of recombinant Escherichia coli producing nitrogenase-related proteins from Azotobacter vinelandii“. Biosci. Biotechnol. Biochem., 85(10), 2209-2216 (2021). doi: 10.1093/bbb/zbab144

  24. Yoshimura, Y., Hirayama, R., Miura, N., Utsumi, R., Kuroda, K., Ueda, M., Kataoka, M., “Small-scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae“. Cell Biol. Int., 45(8), 1776-1783 (2021). doi: 10.1002/cbin.11617

  25. Amai, T., Tsuji, T., Ueda, M., Kuroda, K.*, “Development of a mito-CRISPR system for generating mitochondrial DNA-deleted strain in Saccharomyces cerevisiae“. Biosci. Biotechnol. Biochem., 85(4), 895-901 (2021). doi: 10.1093/bbb/zbaa119

  26. Hibi, M., Fukuda, D., Kenchu, C., Nojiri, M., Hara, R., Takeuchi, M., Aburaya, S., Aoki, W., Mizutani, K., Yasohara, Y., Ueda, M., Mikami, B., Takahashi, S., Ogawa, J. “A three-component monooxygenase from Rhodococcus wratislaviensis may expand industrial applications of bacterial enzymes”. Commun. Biol., 4, 16 (2021). doi: 10.1038/s42003-020-01555-3

  27. Kozono, I., Takeuchi, M., Kozono, S., Satomura, A., Aoki, W., Hibi, M., Ogawa, J., “Characterization of xanthine oxidase from Cellulosimicrobium funkei possessing hypoxanthine‐metabolizing activity”.J. Appl. Microbiol., 130(6), 2132–2140 (2021). doi: 10.1111/jam.14891

  28. Nakagawa, K., Takeuchi, M., Kikuchi, M., Tada, M., Sakamoto, T., Kano, K., Ogawa, J., Sakuradani, E., “Voltammetric in-situ monitoring of leuco-indigo in indigo-fermenting suspensions”. J. Biosci. Bioeng., 131(5), 565–571 (2021). doi: 10.1016/j.jbiosc.2021.01.005

  29. Kikuchi, M., Sowa, K., Nakagawa, K., Matsunaga, M., Ando, A., Kano, K., Takeuchi, M.*, Sakuradani, E* *Corresponding author “Indigo-mediated semi-microbial biofuel cell using an indigo-dye fermenting suspension”. Catalysts, 11(9), 1080 (2021). doi: 3390/catal11091080

  30. Kuroda, K., Ueda, M., “CRISPR nickase-mediated base editing in yeast”. Methods Mol. Biol., 2196, 27-37 (2021). doi: 10.1007/978-1-0716-0868-5_3

  31. Zhang, Y., Eser, B.E., Kougioumtzoglou, G., Eser, Z., Poborsky, M., Kishino, S., Takeuchi, M., Ogawa, J., Kristensen, P., Guo, Z., “Effects of the engineering of a single binding pocket residue on specificity and regioselectivity of hydratases from Lactobacillus acidophilus”. Biochem. Eng. J., 171, 108006 (2021). do: 10.1016/j.bej.2021.108006

  32. Nakagawa, K., Takeuchi, M., Kikuchi, M., Kiyofuji, S., Kugo, M., Sakamoto, T., Kano, K., Ogawa, J., Sakuradani, E., “Mechanistic Insights into Indigo Reduction in Indigo Fermentation: A Voltammetric Study”. Electrochemistry, 89(1), 25–30 (2021). 電気化学会論文賞 doi: 5796/electrochemistry.20-00123

  33. Tatemichi, Y., Kuroda, K., Nakahara, T., Ueda, M., “Efficient ammonia production from food by-products by engineered Escherichia coli“. AMB Express, 10(1), 150 (2020). doi: 10.1186/s13568-020-01083-7

  34. 黒田浩一, “窒素飢餓ストレス応答の制御による酵母のイソブタノール耐性・生産能の強化”. クリーンエネルギー, 29(12), 25-30 (2020).

  35. 黒田浩一, “酵母の窒素代謝制御遺伝子破壊株におけるイソブタノール耐性・生産能の向上”. バイオサイエンスとインダストリー, 78(3), 221-223 (2020).

  36. 黒田浩一, “酵母の分岐鎖アルコール耐性強化によるバイオ燃料生産の向上 -窒素飢餓ストレス応答の制御による耐性獲得と物質生産への応用-”. 配管技術, 62(6), 1-5 (2020).

  37. Eser, B.E., Poborsky, M., Dai, R., Kishino, S., Ljubic, A., Takeuchi, M., Jacobsen, C., Ogawa, J., Kristensen, P., Guo, Z., “Rational engineering of hydratase from Lactobacillus acidophilus reveals critical residues directing substrate specificity and regioselectivity”. ChemBioChem, 21(4), 550–563 (2020). doi: 1002/cbic.201900389

  38. Kozono, I., Hibi, M., Takeuchi, M., Ogawa, J., “Purification and characterization of molybdenum-containing aldehyde dehydrogenase that oxidizes benzyl maltol derivative from Pseudomonas nitroreducens SB32154”. Biosci. Biotechnol. Biochem., 84(11), 2390–2400 (2020). doi: 10.1080/09168451.2020.1799749

  39. Ogawa, J., Takeuchi, M., Ando, A., Hara, R., Hibi, M., Kishino, S., “Application of Enzymatic Reactions Involving Electron Transfer and Energy Supply for the Production of Useful Chemicals” Electron-Based Bioscience and Biotechnology, 101–119 (2020). doi: 10.1007/978-981-15-4763-8_8

  40. Suzuki, T., Fukaya, M., Takahashi, K., Takeuchi, M., Hara, R., Ogawa, J., Ueda, M., “Cloning and characterization of a recombinant α-glucosidase from Ensifer adhaerens NBRC 100388 and evaluation of its glucosyl transfer activity”. Biocatal. Agric. Biotechnol., 30, 101837 (2020). doi: 10.1016/j.bcab.2020.101837

  41. Watanabe, Y., Kuroda, K., Tatemichi, Y., Nakahara, T., Aoki, W., Ueda, M., “Construction of engineered yeast producing ammonia from glutamine and soybean residues (okara)”. AMB Express, 10(1), 70 (2020). doi: 10.1186/s13568-020-01011-9

  42. Kuroda, K.*, Hammer, S. K., Watanabe, Y., Montaño López, J., Fink, G. R., Stephanopoulos, G., Ueda, M., Avalos, J. L., “Critical roles of the pentose phosphate pathway and GLN3 in isobutanol-specific tolerance in yeast”. Cell Systems, 9(6), 534-547 (2019). doi: 10.1016/j.cels.2019.10.006

  43. Ito, M., Kambe, H., Sawagashira, A., Kishino, S., Takeuchi, M., Ando, A., Muramatsu, M., Ogawa, J. “Cloning of a novel gene involved in alkane biosynthesis from Klebsiella”. Appl. Microbiol. Biotechnol., 103(14), 5917–5923 (2019). doi: 10.1007/s00253-019-09900-1

  44. Aburaya, S., Aoki, W., Kuroda, K., Minakuchi, H., Ueda, M., “Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides”. BMC Microbiol., 19(1), 118 (2019). doi: 10.1186/s12866-019-1480-0

  45. Ogawa, J., Soong, C.L., Horinouchi, N., Nojiri, M., Takeuchi, M., Hibi, M., “Microbial Cyclic Imide Metabolism and Its Biotechnological Application”. Imides, Chapter 3, 66–90 (2019). doi: 10.1016/B978-0-12-815675-9.00003-5

  46. Sasaki, Y., Takagi, T., Motone, K., Shibata, T., Kuroda, K., Ueda, M., “Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains”.  Biosci. Biotechnol. Biochem., 82(8), 1459-1462 (2018). doi: 10.1080/09168451.2018.1467262

  47. Mohd Fazli, F.A., Shimada, Y., Nagano, H., Munesato, K., Takeuchi, M., Takemura, M., Ando, A., Ogawa, J., “Production of prostaglandin F by molecular breeding of an oleaginous fungus Mortierella alpina”. Biosci. Biotechnol. Biochem., 83(4), 774–780 (2019). doi: 10.1080/09168451.2018.1562880

  48. Nakajima, D., Nagano, A., Shibata, T., Tanaka, R., Kuroda, K., Ueda, M., Miyake, H., “Xylanase B from Clostridium cellulovorans 743B: overexpression, purification, crystallization and X-ray diffraction analysis”. Acta Crystallogr. F Struct. Biol. Commun., 74(Pt 2), 113-116 (2018). doi: 10.1107/S2053230X18000341

  49. Takagi, T., Kuroda, K., Ueda, M., “Platform construction of molecular breeding for utilization of brown macroalgae”. J. Biosci. Bioeng., 125(1), 1-7 (2018). doi: 10.1016/j.jbiosc.2017.08.005

  50. Ogawa, J., Takeuchi, M., Kishino, S., “Hydratase, Dehydrogenase, Isomerase, and Enone Reductase Involved in Fatty Acid Saturation Metabolism”. Lipid Modification by Enzymes and Engineered Microbes, Chapter 6, 119–137 (2018). doi: 10.1016/B978-0-12-813167-1.00006-2

  51. 黒田浩一, 植田充美, “Cas9ニッカーゼを用いたオフターゲットのない新しいゲノム編集法(CRISPR Nickaseシステム)の開発”. 化学と生物, 56(5), 312-313 (2018).

  52. Tsuda, K., Nagano, H., Nakatsuji, R., Takeuchi, M., Ando, A., Shima, J., Ogawa, J., “Effects of alkyl gallates, fatty acids, and acylglycerols on the growth of the psychrotolerant bacterium Sporosarcina S92h”. Biocatal. Agric. Biotechnol., 30, 101837 (2018). doi: 10.1016/j.bcab.2018.11.031

  53. Takagi, T., Sasaki, Y., Motone, K., Shibata, T., Tanaka, R., Miyake, H., Mori, T., Kuroda, K., Ueda, M., “Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol”.  Appl. Microbiol. Biotechnol., 101(17), 6627-6636 (2017). doi: 10.1007/s00253-017-8418-y

  54. Nakajima, D., Shibata, T., Tanaka, R., Kuroda, K., Ueda, M., Miyake, H., “Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B”. J. Biosci. Bioeng., 124(4), 376-380 (2017). doi: 10.1016/j.jbiosc.2017.04.014

  55. Satomura, A., Nishioka, R., Mori, H., Sato, K., Kuroda, K., Ueda, M., “Precise genome-wide base editing by the CRISPR Nickase system in yeast”. Sci. Rep., 7(1), 2095 (2017). doi: 10.1038/s41598-017-02013-7

  56. Sasaki, Y., Takagi, T., Motone, K., Kuroda, K., Ueda, M., “Enhanced direct ethanol production by cofactor optimization of cell surface-displayed xylose isomerase in yeast”.Biotechnol. Prog., 33(4), 1068-1076 (2017). doi: 10.1002/btpr.2478

  57. Kuroda, K., Ueda, M., “Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae“. J. Biosci. Bioeng., 124(6), 599-605 (2017). doi: 10.1016/j.jbiosc.2017.06.010

  58. Kise, M., Morita, S., Takenaka, R., Mitsukawa, Y., Takeuchi, M., Ogawa, J., “Microbial Synthesis of Oxo Cyclic Amino Acids”, ELCAS Journal, 2, 111–113 (2017). http://hdl.handle.net/2433/224834

  59. Morita, S., Kise, M., Takenaka, R., Mitsukawa, Y., Takeuchi, M., Ogawa, J., “Microbial Decarboxylation of Dicarboxylic Acid Monomethyl Ester”. ELCAS Journal, 2, 109–110 (2017). http://hdl.handle.net/2433/224835

  60. Takenaka, R., Morita, S., Kise, M., Mitsukawa, Y., Takeuchi, M., and Ogawa, J., “Bioconversion of Castor Oil by Microorganisms”. ELCAS Journal, 2, 21–23 (2017). http://hdl.handle.net/2433/224836

  61. Tanaka, R., Mizutani, Y., Shibata, T., Miyake, H., Iehata, S., Mori, T., Kuroda, K., Ueda, M., “Genome sequence of Formosa haliotis strain MA1, a brown alga-degrading bacterium isolated from the gut of abalone Haliotis gigantea“. Genome Announc., 4(6), e01312-01316 (2016). doi: 10.1128/genomeA.01312-16

  62. Ito, R., Kuroda, K., Hashimoto, H., Ueda, M., “Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast”. AMB Express, 6(1), 88 (2016). doi: 10.1186/s13568-016-0262-4

  63. Inamori, T., Aburaya, S., Morisaka, H., Kuroda, K., Ueda, M., “Characteristic strategy of assimilation of various saccharides by Clostridium cellulovorans“. AMB Express, 6(1), 64 (2016). doi: 10.1186/s13568-016-0237-5

  64. Motone, K., Takagi, T., Sasaki, Y., Kuroda, K., Ueda, M., “Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts”. J. Biotechnol., 231, 129-135 (2016). doi: 10.1016/j.jbiotec.2016.06.002

  65. Mori, T., Takahashi, M., Tanaka, R., Miyake, H., Shibata, T., Chow, S., Kuroda, K., Ueda, M., Takeyama, H., “Falsirhodobacter alg1 harbors single homologs of endo and exo-type alginate lyases efficient for alginate depolymerization”. PLoS One, 11(5), e0155537 (2016). doi: 10.1371/journal.pone.0155537

  66. Satomura, A., Miura, N., Kuroda, K., Ueda, M., “Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains”. Sci. Rep., 6, 23157 (2016). doi: 10.1038/srep23157

  67. Nishioka, R., Satomura, A., Yamada, J., Kuroda, K., Ueda, M., “Rapid preparation of mutated influenza hemagglutinins for influenza virus pandemic prevention”. AMB Express, 6(1), 8 (2016). doi: 10.1186/s13568-016-0179-y

  68. Takagi, T., Yokoi, T., Shibata, T., Morisaka, H., Kuroda, K., Ueda, M., “Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate”.Appl. Microbiol. Biotechnol, 100(4), 1723-1732 (2016). doi: 10.1007/s00253-015-7035-x

  69. Takagi, T., Morisaka, H., Aburaya, S., Tatsukami, Y., Kuroda, K., Ueda, M., “Putative alginate assimilation process of the marine bacterium Saccharophagus degradans 2-40 based on quantitative proteomic analysis”. Mar. Biotechnol., 18(1), 15-23 (2016). doi: 10.1007/s10126-015-9667-3

  70. Takeuchi, M., Kishino, S., Park, S.B., Hirata, A., Kitamura, N., Saika, A., Ogawa, J., “Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a”. J. Appl. Microbiol., 120(5), 1282–1288 (2016). doi: 10.1111/jam.13088

  71. Kuroda, K., Ueda, M., “Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production”. FEMS Microbiol. Lett., 363(3), fnv247 (2016). doi: 10.1093/femsle/fnv247

  72. 竹内道樹, “ソテツ”. 日本生物工学会誌, 94, 776 (2016).

  73. Fujita, T., Nakao, E., Takeuchi, M., Tanimura, A., Ando, A., Kishino, S., Kikukawa, H., Shima, J., Ogawa, J., Shimizu, S., “Characterization of starch-accumulating duckweeds, Wolffia globosa, as renewable carbon source for bioethanol production”. Biocatal. Agric. Biotechnol., 6, 123–127 (2016). doi: 10.1016/j.bcab.2016.03.006

  74. Takeuchi, M., Kishino, S., Park, S.B., Kitamura, N., Watanabe, H., Saika, A., Hibi, M., Yokozeki, K., Ogawa, J., “Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage”. Biosci. Biotechnol. Biochem., 80(11), 2132–2137 (2016). doi: 10.1080/09168451.2016.1200457

  75. 里村淳, 黒田浩一, 植田充美, “酵母の熱適応進化戦略”. バイオサイエンスとインダストリー, 74(6), 505-507 (2016).

  76. Kitahara, N., Morisaka, H., Aoki, W., Takeda, Y., Shibasaki, S., Kuroda, K., Ueda, M., “Description of the interaction between Candida albicans and macrophages by mixed and quantitative proteome analysis without isolation”. AMB Express, 5(1), 127 (2015). doi: 10.1186/s13568-015-0127-2

  77. Nambu, M., Tatsukami, Y., Morisaka, H., Kuroda, K., Ueda, M., “Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation”. J. Proteomics, 125, 112-120 (2015). doi: 10.1016/j.jprot.2015.04.034

  78. Shigemori, T., Kuroda, K., Ueda, M., “Screening of randomly mutagenized glucagon-like peptide-1 library by using an integrated yeast-mammalian assay system”.J. Biotechnol., 209, 96-101 (2015). doi: 10.1016/j.jbiotec.2015.06.392

  79. Miura, N., Kuroda, K., Ueda, M., “Enzyme evolution by yeast cell surface engineering”. Methods Mol. Biol., 1319, 217-232 (2015). doi: 10.1007/978-1-4939-2748-7_12

  80. Aburaya, S., Esaka, K., Morisaka, H., Kuroda, K., Ueda, M., “Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis”. AMB Express, 5, 29 (2015). doi: 10.1186/s13568-015-0115-6

  81. Shigemori, T., Kuroda, K., Ueda, M., “Functional screening system for yeast-secreted peptides acting on G-protein coupled receptors”. AMB Express, 5, 26 (2015). doi: 10.1186/s13568-015-0113-8

  82. Satomura, A., Kuroda, K., Ueda, M., “Generation of a functionally distinct Rhizopus oryzae lipase through protein folding memory”. PLoS One, 10(5), e0124545 (2015). doi: 10.1371/journal.pone.0124545

  83. Sakuragi, H., Morisaka, H., Kuroda, K., Ueda, M., “Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway”. Biosci. Biotechnol. Biochem., 79(2), 314-320 (2015). doi: 10.1080/09168451.2014.972330

  84. Esaka, K., Aburaya, S., Morisaka, H., Kuroda, K., Ueda, M., “Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation”. AMB Express, 5(1), 2 (2015). doi: 10.1186/s13568-014-0089-9

  85. Bae, J., Kuroda, K., Ueda, M., “Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface”. Appl. Environ. Microbiol., 81(1), 59-66 (2015). doi: 10.1128/AEM.02864-14

  86. Nishida-Aoki, N., Mori, H., Kuroda, K., Ueda, M., “Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast”. Curr. Genet., 61(2), 153-164 (2015). doi: 10.1007/s00294-014-0463-9

  87. Takeuchi, M., Kishino, S., Park, S.B., Kitamura, N., Ogawa, J., “Characterization of hydroxy fatty acid dehydrogenase involved in polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a”. J. Mol. Catal., B Enzym., 117, 7–12 (2015). doi: 10.1016/j.molcatb.2015.03.020

  88. 里村淳, 黒田浩一, 植田充美, “高効率物質生産に向けた転写因子デザインによるストレス耐性工学”. 日本生物工学会誌, 93(9), 539-541 (2015).

  89. Hirata, A., Kishino, S., Park, S.B., Takeuchi, M., Kitamura, N., Ogawa, J., “A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus”. J. Lipid Res., 56, 1340–1350 (2015). doi: 10.1194/jlr.M059444

  90. Mori, T., Takahashi, M., Tanaka, R., Shibata, T., Kuroda, K., Ueda, M., Takeyama, H., “Draft genome sequence of Falsirhodobacter strain alg1, an alginate-degrading bacterium isolated from fermented brown algae”. Genome Announc., 2(4), e00826-00814 (2014). doi: 10.1128/genomeA.00826-14

  91. Isogawa, D., Morisaka, H., Kuroda, K., Kusaoke, H., Kimoto, H., Suye, S., Ueda, M., “Evaluation of chitosan-binding amino acid residues of chitosanase from Paenibacillus fukuinensis“. Biosci. Biotechnol. Biochem., 78(7), 1177-1182 (2014). doi: 10.1080/09168451.2014.917263

  92. Chung, J., Miura, N., Ito, A., Sawada, M., Nishikawa, S., Kuroda, K., Ueda, M., “Single-cell heterogeneity in suppression of PC12 differentiation by direct microinjection of a differentiation inhibitor, U0126”. Cell Biol. Int., 38(10), 1215-1220 (2014). doi: 10.1002/cbin.10296

  93. Kuroda, K., Ebisutani, K., Iida, K., Nishitani, T., Ueda, M., “Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast”. Biomolecules, 4(2), 390-401 (2014). doi: 10.3390/biom4020390

  94. Nishida, N., Noguchi, M., Kuroda, K., Ueda, M., “A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae“. Biosci. Biotechnol. Biochem, 78(2), 358-362 (2014). doi: 10.1080/09168451.2014.878224

  95. Kuroda, K., Ueda, M., “Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology”. Methods Mol. Biol., 1152, 137-155 (2014). doi: 10.1007/978-1-4939-0563-8_8

  96. Nishida, N., Jing, D., Kuroda, K., Ueda, M., “Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae“. Curr. Genet., 60(3), 149-162 (2014). doi: 10.1007/s00294-013-0419-5

  97. Satomura, A., Kuroda, K., Ueda, M., “Environmental stress tolerance engineering by modification of cell surface and transcription factor in Saccharomyces cerevisiae“. Curr. Environ. Eng., 1, 149-156 (2014). doi: 10.2174/221271780103150522154913#sthash.zm1iWLKj.dpuf

  98. Takeuchi, M., Kishino, S., Hirata, A., Park, S.B., Kitamura, N., Ogawa, J., “Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a”.  J. Biosci. Bioeng., 119(6), 636–641 (2015). doi: 10.1016/j.jbiosc.2014.10.022

  99. Takeuchi, M., Kishino, S., Tanabe, K., Hirata, A., Park, S.B., Shimizu, S., Ogawa, J., “Hydroxy fatty acid production by Pediococcus”. Eur. J. Lipid Sci. Technol., 115(4), 386–393 (2013). doi: 10.1002/ejlt.201200414

  100. Ogawa, J., Takeuchi, M., Kishino, S., “Recent Advances in the Production of CLA and Conjugated Vegetable Oils: Microbial and Enzymatic Production of Conjugated Fatty Acids and Related Fatty Acids in Biohydrogenation Metabolism”. Conjugated Linoleic Acids and Conjugated Vegetable Oils, Chapter 5 (2014). doi: 10.1039/9781782620211-00131

  101. 植田充美, 黒田浩一, “アーミング酵母による多様なレアメタルの選択的回収”. BIO INDUSTRY, 31(2), 19-26 (2014).

  102. Feng, H., Miyakawa, T., Kitamura, N., Takeuchi, M., Park, S.B., Kishino, S., Ogawa, J., Tanokura, M., “Structure and reaction mechanism of a novel enone reductase”. FEBS Journal, 282(8), 1526–1537 (2015). doi: 1111/febs.13239

  103. 植田充美, 黒田浩一, “細胞表層工学による多彩な金属イオンの吸着・回収リサイクル”. 用水と廃水, 56(1), 41-46 (2014).

  104. Shigemori, T., Nagayama, M., Yamada, J., Miura, N., Yongkiettrakul, S., Kuroda, K., Katsuragi, T., Ueda, M., “Construction of a convenient system for easily screening inhibitors of mutated influenza virus neuraminidases”. FEBS Open Bio, 3(1), 484-489 (2013). doi: 10.1016/j.fob.2013.10.007

  105. Shinohara, M., Sakuragi, H., Morisaka, H., Miyake, H., Tamaru, Y., Fukusaki, E., Kuroda, K., Ueda, M., “Fixation of CO2 in Clostridium cellulovorans analyzed by 13C-isotopomer-based target metabolomics”. AMB Express, 3(1), 61 (2013). doi: 10.1186/2191-0855-3-61

  106. Aoki, W., Tatsukami, Y., Kitahara, N., Matsui, K., Morisaka, H., Kuroda, K., Ueda, M., “Elucidation of potentially virulent factors of Candida albicans during serum adaptation by using quantitative time-course proteomics”. J. Proteomics, 91, 417-429 (2013). doi: 10.1016/j.jprot.2013.07.031

  107. Matsui, K., Bae, J., Esaka, K., Morisaka, H., Kuroda, K., Ueda, M., “Exoproteome profiles of Clostridium cellulovorans grown on various carbon sources”. Appl. Environ. Microbiol., 79(21), 6576-6584 (2013). doi: 10.1128/aem.02137-13

  108. Satomura, A., Katsuyama, Y., Miura, N., Kuroda, K., Tomio, A., Bamba, T., Fukusaki, E., Ueda, M., “Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation”.  Biotechnol. Prog., 29(5), 1116-1123 (2013). doi: 10.1021/btpr.1754

  109. Matsuura, H., Yamamoto, Y., Muraoka, M., Akaishi, K., Hori, Y., Uemura, K., Tsuji, N., Bamba, T., Harada, K., Miyasaka, H., Kuroda, K., Ueda, M., Hirata, K., “Development of surface-engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene-excimer fluorescence”. Biotechnol. Prog., 29(5), 1197-1202 (2013). doi: 10.1002/btpr.1789

  110. Tatsukami, Y., Nambu, M., Morisaka, H., Kuroda, K., Ueda, M., “Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation”. BMC Microbiol., 13, 180 (2013). doi: 10.1186/1471-2180-13-180

  111. Miura, N., Shinohara, M., Tatsukami, Y., Sato, Y., Morisaka, H., Kuroda, K., Ueda, M., “Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia”. Eukaryot. Cell, 12(8), 1106-1119 (2013). doi: 10.1128/EC.00093-13

  112. Aoki, W., Kitahara, N., Fujita, A., Shibasaki, S., Morisaka, H., Kuroda, K., Ueda, M., “Detection of Candida albicans by using a designed fluorescence-quenched peptide”. J. Biosci. Bioeng., 116(5), 573-575 (2013). doi: 10.1016/j.jbiosc.2013.05.003

  113. Morioka, S., Shigemori, T., Hara, K., Morisaka, H., Kuroda, K., Ueda, M., “Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2”. Appl. Microbiol. Biotechnol., 97(9), 4013-4020 (2013). doi: 10.1007/s00253-012-4470-9

  114. Nishida, N., Ozato, N., Matsui, K., Kuroda, K., Ueda, M., “ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae“. J. Biotechnol., 165(2), 145-152 (2013). doi: 10.1016/j.jbiotec.2013.03.003

  115. Aoki, W., Ueda, T., Tatsukami, Y., Kitahara, N., Morisaka, H., Kuroda, K., Ueda, M., “Time-course proteomic profile of Candida albicans during adaptation to a fetal serum”.  Pathog. Dis., 67(1), 67-75 (2013). doi: 10.1111/2049-632X.12003

  116. Ota, M., Sakuragi, H., Morisaka, H., Kuroda, K., Miyake, H., Tamaru, Y., Ueda, M., “Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation”. Biotechnol. Prog.,, 29(2), 346-351 (2013). doi: 10.1002/btpr.1700

  117. Fushimi, T., Miura, N., Shintani, H., Tsunoda, H., Kuroda, K., Ueda, M., “Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering”. Appl. Microbiol. Biotechnol., 97(9), 4003-4011 (2013). doi: 10.1007/s00253-012-4467-4

  118. Kuroda, K., Ueda, M., “Arming technology in yeast -novel strategy for whole-cell biocatalyst and protein engineering”. Biomolecules, 3(3), 632-650 (2013). doi: 10.3390/biom3030632

  119. Bae, J., Morisaka, H., Kuroda, K., Ueda, M., “Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes”. J. Mol. Microbiol. Biotechnol., 23(4-5), 370-378 (2013). doi: 10.1159/000351358

  120. 植田充美, 黒田浩一, “アーミング技術によるメタルバイオテクノロジー:レアメタル資源の選別回収への展開”. 環境資源工学会誌, 60(2), 78-83 (2013).

  121. Kishino, S., Takeuchi, M., Park, S.B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., Yokozeki, K., Shimizu, S., Ogawa, J., “Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition”. Proc. Natl. Acad. Sci. USA, 110(44), 17808–17813 (2013). doi: 10.1073/pnas.1312937110

  122. Kishino, S., Takeuchi, M., Park, S.B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., Yokozeki, K., Shimizu, S., Ogawa, J., “Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition”. Proc. Natl. Acad. Sci. USA, 110(44), 17808–17813 (2013). doi: 10.1073/pnas.1312937110

  123. 黒田浩一, 植田充美, “包括的転写制御による効率的物質生産に向けたストレス耐性育種”. 日本生物工学会誌, 91(6), 342-345 (2013).

  124. Hara, K., Shigemori, T., Kuroda, K., Ueda, M., “Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae“. AMB Express, 2(1), 63 (2012). doi: 10.1186/2191-0855-2-63

  125. Nakanishi, A., Bae, J., Kuroda, K., Ueda, M., “Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering”. AMB Express, 2(1), 56 (2012). doi: 10.1186/2191-0855-2-56

  126. Miura, N., Kirino, A., Endo, S., Morisaka, H., Kuroda, K., Takagi, M., Ueda, M., “Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion”. Eukaryot. Cell,11(8), 1075-1082 (2012). doi: 10.1128/EC.00075-12

  127. Aoki, W., Kitahara, N., Miura, N., Morisaka, H., Kuroda, K., Ueda, M., “Design of a novel antimicrobial peptide activated by virulent proteases”. Chem. Biol. Drug Des., 80(5), 725-733 (2012). doi:10.1111/cbdd.12012

  128. Morisaka, H., Matsui, K., Tatsukami, Y., Kuroda, K., Miyake, H., Tamaru, Y., Ueda, M., “Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources”. AMB Express, 2(1), 37 (2012). doi:10.1186/2191-0855-2-37

  129. Nagayama, M., Maeda, H., Kuroda, K., Ueda, M., “Mutated intramolecular chaperones generate high-activity isomers of mature enzymes”. Biochemistry, 51(17), 3547-3553 (2012). doi: 10.1021/bi3001159

  130. Kuroda, K., Nishitani, T., Ueda, M., “Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant”. Appl. Microbiol. Biotechnol., 96(1), 153-159 (2012). doi: 10.1007/s00253-012-4069-1

  131. Hara, K., Inada, Y., Ono, T., Kuroda, K., Yasuda-Kamatani, Y., Ishiguro, M., Tanaka, T., Misaka, T., Abe, K., Ueda, M., “Chimeric yeast G-protein α subunit harboring a 37-residue C-terminal gustducin-specific sequence is functional in Saccharomyces cerevisiae“. Biosci. Biotechnol. Biochem., 76(3), 512-516 (2012). doi: 10.1271/bbb.110820

  132. Hara, K., Ono, T., Kuroda, K., Ueda, M., “Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae“.  J. Biochem., 151(5), 551-557 (2012). doi: 10.1093/jb/mvs027

  133. Aoki, W., Kitahara, N., Miura, N., Morisaka, H., Kuroda, K., Ueda, M., “Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans“. FEMS Immunol. Med. Microbiol., 65(1), 121-124 (2012). doi: 10.1111/j.1574-695X.2012.00941.x

  134. Aoki, W., Kitahara, N., Miura, N., Morisaka, H., Yamamoto, Y., Kuroda, K., Ueda, M., “Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease”. PLoS One, 7(2), e32513 (2012). doi: 10.1371/journal.pone.0032513

  135. Nakanishi, A., Kuroda, K., Ueda, M., “Direct fermentation of newspaper after laccase-treatment using yeast codisplaying endoglucanase, cellobiohydrolase, and β-glucosidase”. Renew. Energy, 44, 199-205 (2012). doi: 10.1016/j.renene.2012.01.078

  136. Nakanishi, A., Kuroda, K., Ueda, M., “Direct fermentation of newspaper after laccase-treatment using yeast codisplaying endoglucanase, cellobiohydrolase, and β-glucosidase”.Renew. Energy, 44, 199-205 (2012). doi: 10.1016/j.renene.2012.01.078

  137. Nagayama, M., Kuroda, K., Ueda, M., “Identification of interaction site of propeptide toward mature carboxypeptidase Y (mCPY) based on the similarity between propeptide and CPY inhibitor (IC)”.Biosci. Biotechnol. Biochem., 76(1), 153-156 (2012). doi: 10.1271/bbb.110668

  138. Nakanishi, A., Bae, J. G., Fukai, K., Tokumoto, N., Kuroda, K., Ogawa, J., Nakatani, M., Shimizu, S., Ueda, M., “Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation”. Appl. Microbiol. Biotechnol., 94(4), 939-948 (2012). doi: 10.1007/s00253-012-3876-8

  139. Aoki, W., Kuroda, K., Ueda, M., “Next generation of antimicrobial peptides as molecular targeted medicines”.J. Biosci. Bioeng., 114(4), 365-370 (2012). doi: 10.1016/j.jbiosc.2012.05.001

  140. Jungu, B., 中西昭仁,植田充美,黒田浩一, “効率的バイオリファイナリーに向けたバイオ前処理技術と耐性育種戦略”. 日本生物工学会誌, 90(7), 382-385 (2012).

  141. Meguro, H., Morisaka, H., Kuroda, K., Miyake, H., Tamaru, Y., Ueda, M., “Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities”. J. Bacteriol., 193(19), 5527-5530 (2011). doi: 10.1128/JB.05022-11

  142. Sanada, M., Kuroda, K., Ueda, M., “ROS production and apoptosis induction by formation of Gts1p-mediated protein aggregates”. Biosci. Biotechnol. Biochem., 75(8), 1546-1553 (2011). doi: 10.1271/bbb.110226

  143. Takayama, K., Suye, S., Tanaka, Y., Mulchandani, A., Kuroda, K., Ueda, M., “Estimation of enzyme kinetic parameters of cell surface-displayed organophosphorus hydrolase and construction of a biosensing system for organophosphorus compounds”.Anal. Sci., 27(8), 823-826 (2011). doi: 10.2116/analsci.27.823

  144. Aoki, W., Kitahara, N., Miura, N., Morisaka, H., Yamamoto, Y., Kuroda, K., Ueda, M., “Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans“.J. Biochem., 150(4), 431-438 (2011). doi: 10.1093/jb/mvr073

  145. Sanada, M., Kuroda, K.*, Ueda, M., “GTS1 induction causes derepression of Tup1-Cyc8-repressing genes and chromatin remodeling through the interaction of Gts1p with Cyc8p”. Biosci. Biotechnol. Biochem., 75(4), 740-747 (2011). doi: 10.1271/bbb.100860

  146. Sanada, M., Kuroda, K., Ueda, M., “Inhibition of heat tolerance and nuclear import of Gts1p by Ssa1p and Ssa2p”. Biosci. Biotechnol. Biochem., 75(2), 323-330 (2011). doi: 10.1271/bbb.100743

  147. Tamaru, Y., Miyake, H., Kuroda, K., Nakanishi, A., Matsushima, C., Doi, R. H., Ueda, M., “Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes”. Microb. Biotechnol., 4(1), 64-73 (2011). doi: 10.1111/j.1751-7915.2010.00210.x

  148. Aoki, W., Yoshino, Y., Morisaka, H., Tsunetomo, K., Koyo, H., Kamiya, S., Kawata, N., Kuroda, K., Ueda, M., “High-throughput screening of improved protease inhibitors using a yeast cell surface display system and a yeast cell chip”. J. Biosci. Bioeng., 111(1), 16-18 (2011). doi: 10.1016/j.jbiosc.2010.08.006

  149. Sakuragi, H., Kuroda, K., Ueda, M., “Molecular breeding of advanced microorganisms for biofuel production”. J. Biomed. Biotechnol., 2011, 416931 (2011). doi: 10.1155/2011/416931

  150. Kuroda, K., Ueda, M., “Cell surface engineering of yeast for applications in white biotechnology”.Biotechnol. Lett., 33(1), 1-9 (2011). doi: 10.1007/s10529-010-0403-9

  151. Kuroda, K., Ueda, M., “Molecular design of the microbial cell surface toward the recovery of metal ions”. Curr. Opin. Biotechnol., 22(3), 427-433 (2011). doi: 10.1016/j.copbio.2010.12.006

  152. Kishino, S., Park, S.B., Takeuchi, M., Yokozeki, K., Shimizu, S., Ogawa, J., “Novel multi-component enzyme machinery in lactic acid bacteria catalyzing C=C double bond migration useful for conjugated fatty acid synthesis”. Biochem. Biophys. Res. Commun., 416(1-2), 188–193 (2011). doi: 10.1016/j.bbrc.2011.11.022

  153. Fukuda, T., Tsuchiya, K., Makishima, H., Tsuchiyama, K., Mulchandani, A., Kuroda, K., Ueda, M., Suye, S., “Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP”. Biotechnol. J.,5(5), 515-519 (2010). doi: 10.1002/biot.200900292

  154. Tamaru, Y., Miyake, H., Kuroda, K., Nakanishi, A., Kawade, Y., Yamamoto, K., Uemura, M., Fujita, Y., Doi, R. H., Ueda, M., “Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B”. J. Bacteriol., 192(3), 901-902 (2010). doi: 10.1128/JB.01450-09

  155. Fukuda, T., Tsuchiyama, K., Makishima, H., Takayama, K., Mulchandani, A., Kuroda, K., Ueda, M., Suye, S., “Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system”. Biotechnol. Lett., 32(5), 655-659 (2010). doi: 10.1007/s10529-010-0204-1

  156. Inaba, C., Higuchi, S., Morisaka, H., Kuroda, K., Ueda, M., “Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells”. Appl. Microbiol. Biotechnol., 86(6), 1895-1902 (2010). doi: 10.1007/s00253-009-2396-7

  157. Kotaka, A., Sahara, H., Kuroda, K., Kondo, A., Ueda, M., Hata, Y., “Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of SED1“. J. Biosci. Bioeng.,, 109(5), 442-446 (2010). doi: 10.1016/j.jbiosc.2009.11.003

  158. Nishitani, T., Shimada, M., Kuroda, K., Ueda, M., “Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals”. Appl. Microbiol. Biotechnol, 86(2), 641-648 (2010). doi: 10.1007/s00253-009-2304-1

  159. Tamaru, Y., Miyake, H., Kuroda, K., Ueda, M., Doi, R. H., “Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing”. Environ. Technol., 31(8-9), 889-903 (2010). doi: 10.1080/09593330.2010.490856

  160. Kuroda, K., Ueda, M., “Engineering of microorganisms towards recovery of rare metal ions”.  Appl. Microbiol. Biotechnol., 87(1), 53-60 (2010). doi: 10.1007/s00253-010-2581-8

  161. 黒田浩一, “細胞表層の改良による有害重金属の吸着・回収が可能な環境浄化酵母の創製”. IFO Research Communications, 24, 101-109 (2010).

  162. 黒田浩一,植田充美, “バイオリファイナリーに向けたリグニンのバイオ処理技術”, 日本生物工学会誌, 88(7), 345-347 (2010).

  163. 植田充美, 黒田浩一, 三宅英雄, 田丸浩, “ソフトバイオマス完全糖化の新バイオ技術 <ソフトバイオマスを完全分解・糖化する新しい微生物前処理技術>”. 配管技術, 52(6), 1-6 (2010).

  164. Inaba, C., Maekawa, K., Morisaka, H., Kuroda, K., Ueda, M., “Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts”.  Appl. Microbiol. Biotechnol., 83(5), 859-864 (2009). doi: 10.1007/s00253-009-1931-x

  165. Ito, J., Kosugi, A., Tanaka, T., Kuroda, K., Shibasaki, S., Ogino, C., Ueda, M., Fukuda, H., Doi, R. H., Kondo, A., “Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains”.  Appl. Environ. Microbiol., 75(12), 4149-4154 (2009). doi: 10.1128/AEM.00318-09

  166. Isogawa, D., Fukuda, T., Kuroda, K., Kusaoke, H., Kimoto, H., Suye, S., Ueda, M., “Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library”. Appl. Microbiol. Biotechnol., 85(1), 95-104 (2009). doi: 10.1007/s00253-009-2041-5

  167. Isogawa, D., Fukuda, T., Kuroda, K., Kusaoke, H., Kimoto, H., Suye, S., Ueda, M., “Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library”. Appl. Microbiol. Biotechnol., 85(1), 95-104 (2009). doi: 10.1007/s00253-009-2041-5

  168. Maeda, H., Nagayama, M., Kuroda, K., Ueda, M., “Purification of inactive precursor of carboxypeptidase Y using selective cleavage method coupled with molecular display”. Biosci.Biotechnol. Biochem., 73(3), 753-755 (2009). doi: 10.1271/bbb.80678

  169. Kuroda, K., Matsui, K., Higuchi, S., Kotaka, A., Sahara, H., Hata, Y., Ueda, M., “Enhancement of display efficiency in yeast display system by vector engineering and gene disruption”. Appl.Microbiol. Biotechnol., 82(4), 713-719 (2009). doi: 10.1007/s00253-008-1808-4

  170. Miura, N., Aoki, W., Tokumoto, N., Kuroda, K., Ueda, M., “Cell-surface modification of non-GMO without chemical treatment by novel GMO-coupled and -separated cocultivation method”. Appl. Microbiol. Biotechnol., 82(2), 293-301 (2009). doi: 10.1007/s00253-008-1787-5

  171. Matsui, K., Kuroda, K., Ueda, M., “Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering”.Appl. Microbiol. Biotechnol., 82(1), 105-113 (2009). doi: 10.1007/s00253-008-1761-2

  172. Shinya, R., Takeuchi, Y., Miura, N., Kuroda, K., Ueda, M., Futai, K., “Surface coat proteins of the pine wood nematode, Bursaphelenchus xylophilus: profiles of stage- and isolate-specific characters”. Nematology, 11, 429-438 (2009). doi: 10.1163/156854109×447006

  173. 黒田浩一, 植田充美, “酵母に有機溶媒耐性を与える転写因子の同定と耐性の再現”. バイオサイエンスとインダストリー, 67(8), 433-435 (2009).

  174. Kuroda, K., Hirakawa, S., Suzuki, M., Shinji, K., Ogasa, K., Uraji, T., Amachi, T., Ueda, M., “Growth acceleration of plants and mushroom by erythritol”. Plant Biotechnol., 25(5), 489-492 (2008). doi:10.5511/plantbiotechnology.25.489

  175. Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., Ueda, M., “Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase”. J. Biosci. Bioeng., 105(6), 622-627 (2008). doi: 10.1263/jbb.105.622

  176. Matsui, K., Teranishi, S., Kamon, S., Kuroda, K., Ueda, M., “Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain”. Appl. Environ. Microbiol., 74(13), 4222-4225 (2008). doi: 10.1128/AEM.02874-07

  177. Kotaka, A., Sahara, H., Hata, Y., Abe, Y., Kondo, A., Kato-Murai, M., Kuroda, K., Ueda, M., “Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases”.Appl. Biotechnol. Biochem., 72(5), 1376-1379 (2008). doi: 10.1271/bbb.70825

  178. Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., Ogino, C., Shibasaki, S., Kuroda, K., Ueda, M., Kondo, A., Hata, Y., “Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface”.Appl. Microbiol. Biotechnol., 79(1), 51-60 (2008). doi: 10.1007/s00253-008-1393-6

  179. Fukuda, T., Kato-Murai, M., Kuroda, K., Ueda, M., Suye, S., “Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain”. Appl. Biotechnol., 77(6), 1225-1232 (2008). doi: 10.1007/s00253-007-1263-7

  180. 植田充美, 黒田浩一, “アーミング技術による細胞表層デザインの展開 -環境浄化からレアメタル・レアアース資源の選択回収へ-”. 日本生物工学会誌, 86(12), 617-619 (2008).

  181. 黒田浩一, 進士和典, 鈴木雅之, 植田充美, “糖アルコール・エリスリトールによる植物の生育促進作用”. Foods & Food Ingredients Journal of Japan, 213(8), 708-711 (2008).

  182. 黒田浩一, 三浦夏子, 植田充美, “バイオマスデザインに向けた細胞育種の新発想”. BIO INDUSTRY, 24(4), 20-24 (2008).

  183. 黒田浩一, 三浦夏子, “金属イオン吸着・回収に向けた細胞表層デザインと吸着分子の創製”. 日本生物工学会誌, 86(6), 280-282 (2008).

  184. 黒田浩一, 島田まり子, 植田充美, “細胞表層デザインによる金属の高効率回収バイオ技術”. 工業材料, 55(8), 66-70 (2007).

  185. Takayama, K., Suye, S., Kuroda, K., Ueda, M., Kitaguchi, T., Tsuchiyama, K., Fukuda, T., Chen, W., Mulchandani, A., “Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae“. Biotechnol. Prog., 22(4), 939-943 (2006). doi: 10.1021/bp060107b

  186. Matsui, K., Hirayama, T., Kuroda, K., Shirahige, K., Ashikari, T., Ueda, M., “Screening for candidate genes involved in tolerance to organic solvents in yeast”. Appl. Microbiol. Biotechnol., 71(1), 75-79 (2006). doi: 10.1007/s00253-006-0328-3

  187. Tamaru, Y., Ohtsuka, M., Kato, K., Manabe, S., Kuroda, K., Sanada, M., Ueda, M., “Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine”. Prog., 22(4), 949-953 (2006). doi: 10.1021/bp060130x
  188. Shibasaki, S., Kuroda, K., Duc Nguyen, H., Mori, T., Zou, W., Ueda, M., “Detection of protein-protein interactions by a combination of a novel cytoplasmic membrane targeting system of recombinant proteins and fluorescence resonance energy transfer”. Appl. Microbiol. Biotechnol., 70(4), 451-457 (2006). doi: 10.1007/s00253-005-0091-x
  189. Kuroda, K., Ueda, M., “Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion”.Appl. Microbiol. Biotechnol., 70(4), 458-463 (2006). doi: 10.1007/s00253-005-0093-8
  190. Kuroda, K., Ueda, M., “Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion”. Appl. Biotechnol., 70(4), 458-463 (2006). doi: 10.1007/s00253-005-0093-8
  191. Kuroda, K., Kato, M., Mima, J., Ueda, M., “Systems for the detection and analysis of protein-protein interactions”.Appl. Microbiol. Biotechnol., 71(2), 127-136 (2006). doi: 10.1007/s00253-006-0395-5
  192. 黒田浩一, “金属のバイオアドソープション”. 日本生物工学会誌, 84(9), 375 (2006).
  193. Kuroda, K., Ueda, M., “Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His”.Appl. Microbiol. Biotechnol., 63(2), 182-186 (2003). doi: 10.1007/s00253-003-1399-z
  194. 黒田浩一, 植田充美, “酵母によるバイオレメデイエ-ションー重金属イオン検知・吸着・回収リサイクリングシステム”. BIO INDUSTRY, 20(2), 34-39 (2003).
  195. Yasui, M., Shibasaki, S., Kuroda, K., Ueda, M., Kawada, N., Nishikawa, J., Nishihara, T., Tanaka, A., “An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface”. Microbiol. Biotechnol., 59(2-3), 329-331 (2002). doi: 10.1007/s00253-002-1019-3
  196. Yasui, M., Shibasaki, S., Kuroda, K., Ueda, M., Kawada, N., Nishikawa, J., Nishihara, T., Tanaka, A., “An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface”. Appl. Biotechnol., 59(2-3), 329-331 (2002). doi: 10.1007/s00253-002-1019-3
  197. Kuroda, K., Ueda, M., Shibasaki, S., Tanaka, A., “Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion”. Appl. Biotechnol., 59(2-3), 259-264 (2002). doi: 10.1007/s00253-002-1014-8
  198. Kuroda, K., Shibasaki, S., Ueda, M., Tanaka, A., “Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions”.Appl. Microbiol. Biotechnol., 57(5-6), 697-701 (2001). doi: 10.1007/s002530100813

著書

  1. 佐藤源気, 黒田浩一, “ゲノム編集実験におけるターゲット遺伝子の選び方”. 『ゲノム編集技術 ~実験上のポイント/産業利用に向けた研究開発動向と安全性周知』, 第2章, 第2節 (情報機構), pp. 45-50 (2023).

  2. 佐藤源気, 黒田浩一, “高いゲノム編集効率へ向けたgRNA 配列の選定方法”. 『ゲノム編集技術 ~実験上のポイント/産業利用に向けた研究開発動向と安全性周知』, 第2章, 第1節 (情報機構), pp. 51-57 (2023).

  3. 佐藤源気, 黒田浩一, “遺伝子ノックアウト、ノックイン設計法”. 『ゲノム編集技術 ~実験上のポイント/産業利用に向けた研究開発動向と安全性周知』, 第2章, 第3節 (情報機構), pp. 59-67 (2023).

  4. 佐藤源気, 黒田浩一, “ゲノム編集に伴うオフターゲット効果と改善策”. 『ゲノム編集技術 ~実験上のポイント/産業利用に向けた研究開発動向と安全性周知』, 第2章, 第4節 (情報機構), pp. 68-76 (2023).

  5. 佐藤源気, 黒田浩一, “ゲノム編集におけるオフターゲットの回避と低減”. 『ゲノム編集技術 ~実験上のポイント/産業利用に向けた研究開発動向と安全性周知』, 第7章, 第2節 (情報機構), pp. 416-428 (2023).

  6. 上田 誠, 小川 順, 竹内道樹, “糖転移反応によるアルキルアルコールやポリフェノールの配糖化”. 微生物を活用した有用物質の製造技術, 第7章 食品素材の生産, (シーエムシー出版), pp.249−257 (2023).

  7. 黒田浩一, “酵母の窒素飢餓応答制御による分岐鎖アルコール耐性の強化とイソブタノール生産能の向上”. 『バイオエネルギー再燃』, 第2章, 第5節 (シーエムシー出版), pp. 39-47 (2021).

  8. 黒田浩一, “オフターゲットを軽減した次世代ゲノム編集技術の開発”. 『ゲノム編集技術を応用した製品開発とその実用化』, 第3章, 第3節 (技術情報協会), pp. 193-199 (2021).

  9. 渡邉幸夫, 黒田浩一, “細胞表層工学によるデンプンやセルロースを利用したバイオエネルギー生産”. 『細胞表層工学の進展』, 第1章, 第1節 (シーエムシー出版), pp. 10-21 (2020).

  10. 黒田浩一, “細胞表層デザインによる酵母耐性工学の確立”. 『細胞表層工学の進展』, 第4章, 第5節 (シーエムシー出版), pp. 232-238 (2020).

  11. 黒田浩一, “細胞表層デザインによるレアメタル・レアアース回収酵母の創製”. 『細胞表層工学の進展』, 第1章, 第7節 (シーエムシー出版), pp. 68-77 (2020).

  12. 黒田浩一, “アーミング酵母による重金属・環境ホルモン汚染水環境の浄化”. 『細胞表層工学の進展』, 第1章, 第6節 (シーエムシー出版), pp. 59-67 (2020).

  13. 天井貴光, 黒田浩一, “ゲノム編集の礎からの展開”. 『バイオイノベーションに向けて -バイオテクノロジーの新技術からの新しい視点-』, 第2章, 第1節 (シーエムシー出版), pp. 35-42 (2019).

  14. 黒田浩一, “オフターゲットのない新しいゲノム編集法の開発”. 『バイオイノベーションに向けて -バイオテクノロジーの新技術からの新しい視点-』, 第2章, 第3節 (シーエムシー出版), pp. 50-57 (2019).

  15. Kuroda, K., “Preparation of functional cells: improvement of stress tolerance”. Yeast Cell Surface Engineering, chapter 7 (Springer), pp. 85-92 (2019). doi: 10.1007/978-981-13-5868-5_7

  16. Kuroda, K., “Recovery of rare metal ions”. Yeast Cell Surface Engineering, chapter 6 (Springer), pp. 73-83 (2019). doi: 10.1007/978-981-13-5868-5_6

  17. Kuroda, K., “Cleanup of pollution: heavy metal ions and environmental hormones”. Yeast Cell Surface Engineering, chapter 5 (Springer), pp. 63-72 (2019). doi: 10.1007/978-981-13-5868-5_5

  18. Kuroda, K., “Energy production: biomass – starch, cellulose, and hemicellulose”. Yeast Cell Surface Engineering, chapter 2 (Springer), pp. 17-28 (2019). doi: 10.1007/978-981-13-5868-5_2

  19. Kuroda, K., Ueda, M., “Adaptive evolution of yeast under heat stress and genetic reconstruction to generate thermotolerant yeast”. Origin and Evolution of Biodiversity (Springer), pp. 23-36 (2018). doi: 10.1007/978-3-319-95954-2_2

  20. 黒田浩一, 植田充美, “セルファクトリーから真のスマートセル構築に向けて”. 『人工細胞の創製とその応用』, 第4章, 第7節 (シーエムシー出版), pp. 207-215 (2017).

  21. 黒田浩一, “第8章 物質循環(3.金属と微生物, 4.生態系の維持)”. 『応用微生物学 第3版』, 第8章, 第3, 4節 (文永堂出版), pp. 272-276 (2016).

  22. 黒田浩一, 植田充美, “アーミング酵母による多様なレアメタルの選択的回収”. 『バイオベース資源確保戦略 -都市鉱山・海底鉱山に眠る貴金属・レアメタル等の分離・回収技術-』, 第1編, 第4章 (シーエムシー出版), pp. 28-36 (2015).

  23. 黒田浩一, 植田充美, “酵母の細胞表層デザインによるレアメタル吸着・回収システム”. 『地球を救うメタルバイオテクノロジー -微生物と金属資源のはなし-』, 第3章, 第1.5節 (成山堂書店), pp. 47-55 (2014).

  24. Yamada, J., Miura, N., Shigemori, T., Kuroda, K., Ueda, M., “Application of cell surface engineered yeast for the development of drugs against influenza virus infection”. Influenza and RNA Viruses: Emergence, Classification and Management, chapter 5 (Nova Science Publishers), pp. 91-110 (2014).

  25. 松井一真, 横井貴大, 黒田浩一, 植田充美, “大型藻類からのバイオエタノール生産”. 『リサイクルバイオテクノロジーの最前線』, 第1章, 第7節 (シーエムシー出版), pp. 50-56 (2013).

  26. 戎谷一輝, 黒田浩一, 植田充美, “細胞表層工学によるレアメタル・ウランの選択的回収”. 『リサイクルバイオテクノロジーの最前線』, 第10章 (シーエムシー出版), pp. 215-223 (2013).

  27. 五十川團哉, 黒田浩一, 植田充美, “カニ廃棄物からの有用オリゴ糖生産技術”. 『リサイクルバイオテクノロジーの最前線』, 第3章, 第5節 (シーエムシー出版), pp. 150-157 (2013).

  28. Jungu, B., 黒田浩一, 植田充美, “アーミング酵母によるリグニン変換技術とその利用”. 『リグニン利用の最新動向』, 第6章, 第2節 (シーエムシー出版), pp. 219-225 (2013).

  29. 中西昭仁, Jungu, B., 黒田浩一, 植田充美, “細胞表層工学を利用した最適なセルラーゼカクテルの構築”. 『バイオマス分解関連酵素研究の最前線』, 第5編, 第18章 (シーエムシー出版), pp. 202-207 (2012).

  30. 黒田浩一, “転写因子デザインによる有機溶媒耐性酵母の分子育種と耐性機構の解析”. 『合成生物工学の隆起 -有用物質の新たな生産法構築をめざして-』, 第7章 (シーエムシー出版), pp. 124-130 (2012).

  31. Kuroda, K., Ueda, M., “Construction of yeast bioadsorbent by cell surface engineering”. Handbook of Metal Biotechnology: Applications for Environmental Conservation and Sustainability, chapter 8 (Pan Stanford Publishing), pp. 89-99 (2012). doi: 10.1201/b11762

  32. Kuroda, K., Ueda, M., “Cell surface design for selective recovery of rare metal ions”. Handbook of Metal Biotechnology: Applications for Environmental Conservation and Sustainability, chapter 16 (Pan Stanford Publishing), pp. 195-205 (2012). doi: 10.1201/b11762

  33. Jungu, B., 中西昭仁, 黒田浩一, 植田充美, “リグニン分解酵素表層提示酵母を用いたバイオマス変換”. 『バイオマス分解関連酵素研究の最前線』, 第7編, 第29章 (シーエムシー出版), pp. 272-277 (2012).

  34. Kuroda, K., Ueda, M., “Yeast biosorption and recycling of metal ions by cell surface engineering”. Microbial Biosorption of Metals, chapter 10 (Springer), pp. 235-247 (2011). doi: 10.1007/978-94-007-0443-5_10

  35. Isogawa, D., Kuroda, K., Ueda, M., “Whole-cell biocatalyst for utilization of chitosan by yeast cell surface engineering of chitosanase”. Handbook of Chitosan Research and Applications, chapter 24 (Nova Science Publishers), pp. 425-434 (2011).

  36. 中西昭仁, Bae Jungu, B., 黒田浩一, “バイオリファイナリーからのフェノールプラットフォーム -フェノール化合物への変換-“. 『エコバイオリファイナリー -脱石油社会へ移行するための環境ものづくり戦略-』, 第7章, 第11節 (シーエムシー出版), pp. 229-236 (2010).

  37. 植田充美, 黒田浩一, “酵素の細胞表層ディスプレイ-アーミング技術”. 『酵素利用技術大系 ~基礎・解析から改変・高機能化・産業利用まで~』, 第5編, 第5章, 第9節 (NTS出版), pp. 867-872 (2010).

  38. 植田充美, 黒田浩一, “エネルギー:バイオマス”. 『酵素利用技術大系 ~基礎・解析から改変・高機能化・産業利用まで~』, 第5編, 第5章, 第9節 (NTS出版), pp. 552-559 (2010).

  39. 黒田浩一, 植田充美, “第2世代バイオエタノール(セルロース・バイオエタノール)の効率的生産-CBP法の展開”. 『セルロース系バイオエタノール製造技術 -食料クライシス回避のために-』, 第3編, 第1章 (NTS出版), pp. 229-241 (2010).

  40. Kuroda, K., Ueda, M., “Biofuel production from cellulosic biomass by cell surface engineering – development of arming technology to design biocatalyst for consolidated bioprocessing (CBP) system”. Cellulose: Structure and Properties, Derivatives and Industrial Uses, chapter 14 (Nova Science Publishers), pp. 369-383 (2010).

  41. 植田充美, 石川峻士, 黒田浩一, “植物生育促進への新しい育種法の開発”. 『第二世代バイオ燃料の開発と応用展開』, 第4章, 第1節 (シーエムシー出版), pp. 39-46 (2009).

  42. 植田充美, 黒田浩一, “多様なレアメタル・レアアースを個別に選別して特異的に回収することを可能にするアーミング技術の戦略”. 『メタルバイオテクノロジーによる環境保全と資源回収』, 第6章, 第1節 (シーエムシー出版), pp. 201-207 (2009).

  43. 黒田浩一, 植田充美, “細胞表層工学による新しいバイオアドソーベント -細胞表層を利用した金属イオンの吸着・回収リサイクル-”. 『メタルバイオテクノロジーによる環境保全と資源回収』, 第4章, 第1節 (シーエムシー出版), pp. 97-103 (2009).

  44. 中西昭仁, 黒田浩一, “バイオリファイナリーによるリグニンの有用物質への変換”. 『微生物によるものづくり -化学法に代わるホワイトバイオテクノロジーの全て-』, 第5章, 第8節 (シーエムシー出版), pp. 288-294 (2008).

  45. 植田充美, 黒田浩一, 加藤倫子, “微生物育種の未来開拓-細胞分子育種に変革をもたらす細胞表層工学の開拓-”. 『生物資源から考える21世紀の農学 6 微生物機能の開発』, 第10章 (京都大学学術出版会), pp. 275-314 (2008).

  46. 松井健, 黒田浩一, “有機溶媒耐性を賦与した酵母を用いたエステル合成”. 『微生物によるものづくり -化学法に代わるホワイトバイオテクノロジーの全て-』, 第5章, 第6節, (シーエムシー出版), pp. 275-280 (2008).

  47. 黒田浩一, “レアメタルや重金属を吸着・回収するバイオアドソーベント”. 『微生物によるものづくり -化学法に代わるホワイトバイオテクノロジーの全て-』, 第6章, 第5節 (シーエムシー出版), pp. 324-332 (2008).

  48. 黒田浩一, 植田充美, “細胞表層工学による新しいモリブデン回収バイオ技術とその展開”. 『貴金属・レアメタルのリサイクル技術集成』, 第2編, 第3章, 第5.2節 (NTS出版), pp. 305-313 (2007).

  49. 植田充美, 加藤倫子, 黒田浩一, “アーミング酵母によるバイオエタノール製造技術(プロトタイプ)”. 『エコバイオエネルギーの最前線-ゼロエミッション型社会を目指して-』, 第1章, 第3節 (シーエムシー出版), pp. 35-40 (2005).

  50. 黒田浩一, 植田充美, “環境浄化への新しい戦略”. 『コンビナトリアル・バイオエンジニアリングの最前線』, 第2編, 第4章, 第3節 (シーエムシー出版), pp. 110-119 (2004).

  51. 黒田浩一, 植田充美, “酵母によるバイオレメデイエ-ションー重金属イオン検知、吸着、回収リサイクルシステム”. 『環境修復と有用物質生産 -環境問題へのバイオテクノロジーの利用-』, 第9章 (シーエムシー出版), pp. 120-125 (2003).

特許

  1. 発明者: 小川順、原良太郎、岸野重信、竹内道樹、安藤晃規、亀田倫史、池部仁善、来見田遥一、石原聡、小池田聡

    発明の名称: ポリペプチド、オキシゲナーゼ及びこれらの応用

    出願者:天野エンザイム株式会社, 国立研究開発法人産業技術総合研究所, 国立大学法人京都大学

    国際出願番号: PCT/JP2023/023517(出願日: 2023年6月26日)

    国際公開番号:  WO2024004921(公開日: 2024年1月4日)

  2. 発明者: 小川順、竹内道樹、上田誠、松浦圭介

    発明の名称:クルクミノイドのモノα-配糖体及びクルクミノイドのモノ配糖体の製造方法

    出願者:国立大学法人京都大学, 独立行政法人国立高等専門学校機構, 株式会社トクヤマ

    出願番号:特願2022-094798 (出願日: 2022年6月13日)

    公開番号: 特開2023-181588 (公開日: 2023年12月25日)

  3. 発明者:小川順、竹内道樹、上田誠、松浦圭介

    発明の名称: レスベラトロールのモノ配糖体の製造方法

    出願者:国立大学法人京都大学, 独立行政法人国立高等専門学校機構, 株式会社トクヤマ

    出願番号:特願2022-094799(出願日: 2022年6月13日)

    公開番号:特開2023-181589(公開日: 2023年12月25日)

  4. 発明者: José L. Avalos, Sarah K. Hammer, Kouichi Kuroda, Gerald R. Fink, Gregory Stephanopoulos

    発明の名称: System and Method for Increased Alcohol Tolerance and Production in Yeast

    出願者: The Trustees of Princeton University, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Kyoto University

    国際出願番号: PCT/US2020/052619(出願日: 2020年9月25日)

    国際公開番号:  WO 2021/062082 A1(公開日: 2021年4月1日)

  5. 発明者:  植田充美, 黒田浩一, 戎谷一輝, 西岡弘雅, 福谷耕司

    発明の名称: ウラン吸着ペプチド

    出願者:原子力安全システム研究所

    出願番号:特願2012-86107 (出願日: 2012年4月5日)

    公開番号:特開2013-216585(公開日: 2013年10月24日)

  6. 発明者:  植田充美, 黒田浩一, 松井健

    発明の名称: 酸耐性を酵母に付与するペプチド

    出願者: 国立大学法人京都大学

    出願番号:特願2008-291325(出願日: 2008年11月3日)

    公開番号:特開2010-116355(公開日: 2010年5月27日)

  7. 発明者: Mitsuyoshi Ueda, Kouichi Kuroda

    発明の名称:Organic solvent-resistant gene

    出願者:Kyoto University

    国際出願番号: PCT/JP2007/063776(出願日: 2007年7月4日)

    国際公開番号:  WO 2008/004707 A1(公開日: 2008年1月10日)

  8. 発明者:植田充美, 黒田浩一

    発明の名称:有機溶媒耐性遺伝子

    出願者:国立大学法人京都大学

    出願番号:特願2008-523774(出願日: 2007年7月4日)

TOP